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ABSTRACT 

 

The U.S. government encourages the development of biofuel industry through 

policy and financial support since 1978. Though first generation biofuels (mainly bio-

based ethanol) expand rapidly between the early 1980s and late 2000s, more attention 

has turned to second generation biofuels, such as cellulosic biofuels, due to the ‘food-

versus-fuel’ debate, and potential impact on land use and climate change caused by the 

development of first generation biofuel production. 

Over the last few years, a rich literature has arisen on lignocellulosic crops or 

crop residues being used as biomass feedstock for second generation biorefineries. In 

this thesis, two types of assessments on cellulosic biofuel production have been 

conducted: techno-economic analysis of the fast pyrolysis fractionation pathway and 

supply chain design for the advanced biofuel production.  

Firstly, the economic feasibility of a fast pyrolysis fractionation facility is 

examined. The facility takes lignocellulosic biomass feedstock, goes through the 

pyrolysis process, recovers pyrolysis oil into different fractions, and upgrades the 

fractions into two main products: commodity chemicals and liquid transportation fuels. 

The Internal Rate of Return (IRR) of this production pathway is evaluated to be 8.78%.  

Secondly, mixed integer linear programming models are used to optimize 

locations and capacities of distributed fast pyrolysis facilities. The supply chain 

optimization framework is implemented in a case study of Iowa with the goal of 

minimizing total annual production cost. Comparisons are carried out to investigate the 
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two choices for the centralized refining facility: outsourced to Louisiana or build a 

refining facility in Iowa. An extension of the supply chain design model to sequential 

facility location-allocation analysis is also performed for Iowa, taking budget availability 

and revised Renewable Fuel Standard (RFS2) goal into consideration. The objective is to 

maximize the net present value (NPV) of the profits over the next 10 years.  
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CHAPTER 1 GENERAL INTRODUCTION 

 

Petroleum is the primary source for a wide range of products, such as gasoline, 

diesel fuel, commodity chemicals, etc. Petroleum products are important primary energy 

sources, mainly due to their high energy density and easy transportability[1]. In the U.S., 

the majority of petroleum is used for transportation, and the rest for industry, residential 

and commercial uses [2]. However, the International Energy Agency (IEA) estimated 

that conventional crude oil production has peaked and will decline continuously over the 

next quarter century [3]. Non-renewable petroleum resources decrease, while the 

demands of transportation fuels increase due to growing economies. Besides the energy 

security issue, there are environmental consequences with prevailing usage of the 

petroleum energy, including air pollution, global warming, and impacts from oil spills 

[4].  

The Renewable Fuel Standard (RFS) program was created under the Energy 

Policy Act of 2005, and established the first renewable fuel volume mandate in the U.S. 

In 2007, the U.S. government enacted the revised version of RFS (RFS2) [5], in which a 

target of 36 billion gallons per year (BGY) of biofuels in domestic transportation fuel 

consumption is set up. Of this volume, 16 BGY must come from cellulosic biofuels. The 

mandates in RFS2 lead to the emergence of biofuel economy, and prompt consideration 

from a variety of societal sectors. 

A biofuel is any type of liquid or gaseous fuel that can be produced from biomass 

substrates and that can be used as a (partial) substitute for fossil fuels [6]. Different types 
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of biofuels are used in the U.S., including E10, E85, biodiesel, biobutanol, etc. Biofuels 

are often viewed as renewable, cleaner fuels with societal benefits on rural development 

and job creation. While biofuels have been recognized as potential sustainable fuel 

sources, a number of issues have arisen and would impact the assessment of the 

production pathways: (a) Substitutability issues: biodiesel and ethanol have inherent 

limitations due to their reliance on fossil fuel blending, while biobutanol is a liquid 

alcohol fuel that can be used in today’s gasoline-powered internal combustion engines 

[7], and bio-based hydrocarbon fuels can also be used in existing engines [8]. (b) 

Infrastructure issues: Yacobucci et al. [9] concluded that investment in new 

infrastructure would be necessary for ethanol-blended gasoline beyond certain levels. 

Drop-in biofuels show the benefits of utilizing existing infrastructure for petroleum 

fuels, such as pumps and pipelines [8]. (c) Emission issues: analysis of carbon 

requirements [10] and total fuel-cycle emissions [11] show that most biofuels are more 

environmental friendly than conventional fossil fuels. However, detailed lifecycle 

assessment has to been conducted on individual production pathway to ensure the 

environmental impact. (d) Land issues: land availability, indirect land use changes, 

fertility of land resources, and deforestation issues have significant impact on the 

outlook of biofuels in global fuel supplies [12]. Previous studies [6, 13] have shown that 

not enough arable land is available for biomass feedstock supply, which leads to land 

conversion and deforestation, which might cause elimination in some environmental 

benefits.  
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With the development of biofuels industry, rich literature has dealt with biomass 

logistics analysis, supply chain design and operational planning for biofuel production. 

Sokhansanj et al. [14] provided an integrated biomass supply analysis and logistics 

(IBSAL) model for simulating collection, storage and transport operations of biomass 

supply, and a numerical example of corn stover collection and transportation in bales 

was analyzed. Kumar et al. [15] employed IBSAL model to switchgrass delivery 

analysis. Ekşioğlu et al. [16] proposed a multi-period MIP to design the network and 

material flows of biomass-to-biorefinery supply chain and later extended the model with 

consideration of different transportation modes [17]. Cundiff et al. [18] analyzed harvest, 

storage and transportation of herbaceous biomass to conversion plants, and developed a 

stochastic linear programming approach for modeling under production uncertainty due 

to weather conditions.  

Despite of the increasing interests in research institutes, national labs and start-up 

companies, cellulosic biomass to liquid fuel technologies are yet to be commercialized at 

larger scale. To investigate the production cost of cellulosic based drop-in fuels, the 

economic feasibility of a biofuel facility with multiple products is conducted in the 

thesis. Logistic decisions are essential in supply chain network design. Mathematical 

models to assist decision making of facility locations and capacities are discussed 

considering the spatially distributed feedstock supplies and customers’ demands. The 

rest of the thesis is organized as follows: 

In Chapter 2, we present the techno-economic analysis of fast pyrolysis 

fractionation pathway, with woody biomass as feedstock, liquid fuels and chemicals as 
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the final products. The techno-economic analysis utilizes the experiment design for the 

chemical processes, simulates the production process at commercial scale, estimates the 

capital investment and annual operating costs, and finally evaluates the economic 

profitability of the production at commercial scale. The results and process design 

information derived from the techno-economic analysis are important data sources in the 

biofuel supply chain design and operational planning analysis. 

In Chapter 3, facility location and capacity decision models are formulated to 

study the optimal siting and sizing of the distributed fast pyrolysis facilities. Two 

scenarios are considered for the centralized upgrading refinery, one using existing 

petroleum refinery and the other using newly constructed biorefinery at the optimal 

location provided by the model. The comparison of the two scenarios shows the 

economic feasibility for a new centralized biorefinery construction. 

An extension of facility decision making is to investigate the optimal sequence of 

facility construction with the consideration of budget limitation and demand pattern. In 

Chapter 4, a preliminary sequential location and allocation model is proposed, and case 

study results are also illustrated.  

Chapter 5 concludes the thesis with the summary and conclusions. Future 

research directions are also discussed in the Chapter 5. 
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CHAPTER 2 TECHNO-ECONOMIC ANALYSIS OF BIOCHEMICAL AND LIQUID 

FUELS PRODUCTION VIA FAST PYROLYSIS FRACTIONATION 

Modified from a paper to be submitted to Bioresource Technology 

Yihua Li
1
, Chamila Thilakaratne

2
, Tristan Brown

3
, Guiping Hu

4
, Robert Brown

5
 

 

Abstract 

This techno-economic study evaluates the economic feasibility of producing 

commodity chemicals and liquid fuels with a fast pyrolysis fractionation facility. In the 

process, conventional pyrolysis oil converting from woody biomass is recovered into a 

series of stage fractions (SFs) with distinctive physical and chemical properties. The SFs 

are then assigned to different upgrading processes with different products: catalytic 

hydroprocessing of heavy ends to produce gasoline and diesel range fuels, while two 

stage hydrotreating combined with fluid catalytic cracking (FCC) of aqueous phase to 

produce commodity chemicals.  

Internal rate of return (IRR) is calculated for the pathway, considering the capital 

investment, annual operational costs and projected revenues for the facility. Under a 

baseline condition, the facility IRR is estimated to be 8.78%, which is influenced mainly 

by changes in major products prices and yields, total capital cost and feedstock cost.  

1. Introduction 

                                                 
1
 Graduate student, primary researcher and author, Department of Industrial and Manufacturing Systems 

Engineering, Iowa State University 
2
 Graduate student, Department of Mechanical Engineering, Iowa State University 

3
 Postdoc research associate, Department of Bioeconomy Institute, Iowa State University 

4
 Author for correspondence, assistant professor, Department of Industrial and Manufacturing Systems 

Engineering, Iowa State University 
5
 Professor, Department of Mechanical Engineering, Iowa State University 
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Biofuels are clean and renewable, and they are receiving much attention all over 

the world for the increasing energy demand and environmental concerns. The 

Renewable Fuel Standard (RFS) [1] is brought out by the U.S. federal to require a 

minimum volume of renewable fuels contained in transportation fuel consumed in the 

U.S. The revised RFS (RFS2) [1, 2] in 2007 requires the renewable fuels to be blended 

into transportation fuel reach 36 billion gallons per year (BGY) by 2022. Of the 36 

BGY, conventional biofuel is restricted to 15 BGY, while cellulosic biofuel has the 

minimum requirement of 16 BGY. Under RFS2, cellulosic biofuel technologies have 

gained increasing attention. Hydrocarbon biorefinery converts cellulosic biomass 

(including crop residues, woody biomass, dedicated energy crops etc.) to liquid drop-in 

fuels. Compare to conventional ethanol, drop-in fuels have better engine and 

infrastructure compatibility. Drop-in fuels could be used directly in gasoline- or diesel-

powered vehicles, and do not require substantial changes in refining or distribution 

infrastructure of traditional fossil fuels [3]. And drop-in fuels also have the following 

advantages comparing to petroleum based transportation fuels [4]: 

 Increased Energy Security: drop-in fuels can be produced domestically from a 

variety of feedstock and contribute to the rural economic development and additional 

job opportunities. 

 Fewer Emissions: carbon dioxide captured by growing biomass reduces overall 

greenhouse gas emissions by balancing carbon dioxide released from burning drop-

in fuels. 
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 More flexibility: drop-in fuels are replacements for diesel, jet fuel and gasoline 

allowing for multiple products from various types of feedstock and production 

technologies. 

Despite of the advantages of cellulosic based drop-in fuels, the production 

pathways are not commercialized at significant scale yet. The main obstacle for 

commercialization is the high production cost, especially the capital investment, which is 

the motivation for this study.  

Pyrolysis oil can be used for a range of applications [5], including combustion of 

pyrolysis oil in boilers for heat [6], the use of pyrolysis oil in diesel engines and gas 

turbines for power production [7-10], upgrading of pyrolysis oil to automotive fuels [11-

13] or hydrogen [14], processes to extract high-value chemicals from pyrolysis oil [15-

17], etc. In this study, fast pyrolysis is performed on pre-processed biomass. The 

pyrolysis oils are then recovered into different fractions and produce commodity 

chemicals and transportation fuels. 

Elliott et al. [12] proposed that catalytic hydroprocessing could be applied to fast 

pyrolysis liquid product (bio-oil), and the processed bio-oil could be used as feedstock of 

a petroleum refinery. Low temperature hydrotreating and high temperature 

hydrocracking were investigated on different kinds of biomass (mixed wood, mixed 

wood heavy phase, corn stover, oak, poplar, etc.). Brief process results of different 

biomass are provided, while more detailed component group percentage data are also 

given for mixed wood bio-oil hydroprocessing.  
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Vispute et al. [16] explored process for bio-oil deoxygenation into high-yield 

commodity chemicals using a combined approach of hydrotreating and fluid catalytic 

cracking (FCC). Five scenarios are analyzed in this paper, a) FCC of crude bio-oil (BO); 

b) one stage hydrotreating and FCC of BO; c) FCC of water soluble fraction of a 

pinewood bio-oil (WSBO); d) one stage hydrotreating and FCC of WSBO; e) two stage 

hydrotreating and FCC of WSBO. It is concluded that an integrated approach of 

hydrotreating and FCC could finally convert the feedstock into aromatics and olefins, 

and is more economically attractive. 

Pollard et al. [18] pointed out that bio-oil contains compounds that have wide 

range of boiling points, including volatile organic compounds, water, and non-volatile 

compounds (i.e. sugars and lignin oligomers). And in Pollard’s paper, they developed a 

recovery system into distinctive stage fractions. Fractionation is achieved with coolants 

operate at carefully controlled temperature and capture compounds in each stage fraction 

(SF) selectively. The first and second fractions were collected with similar properties 

and composition. These fractions were high in levoglucosan and water insoluble content, 

and low in water and acid. The third and fourth fractions were high in phenolic 

compounds and acetic acid, and relatively low moisture. The final fraction contained 

large amounts of water and acetic acid. Fractionated bio-oil is improved in heating value 

for low water and acid content.  

In this study, we use a series of condensers and electrostatic precipitators (ESPs) 

to recover fast pyrolysis bio-oil into six stage fractions. The temperatures of all 

equipment in fractionation section are carefully controlled to capture compounds with 
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distinct physical and chemical properties. SF1-4 are treated as the heavy ends, treated 

with catalytic hydroprocessing to produce feedstock for refinery. SF5-6 are treated as the 

aqueous phase, treated with two-stage hydrotreating and FCC to produce commodity 

chemicals. Process design and economic analysis, including capital costs and operating 

costs estimation, are discussed in the paper. 

2. Process Design 

2.1 Process description 

The fast pyrolysis converts woody biomass to pyrolysis bio-oil. Fractionation 

section recover bio-oil into 6 different stage fractions using physical and chemical 

properties difference of various compounds. In this study, we assume sugar mainly 

exists in the first 2 stage fractions. Extract sugar from the first 2 stage fractions, mix up 

the remainders with SF3-4, this part is treated as the heavy phase. Catalytic 

hydroprocessing is utilized to convert the heavy ends to upgraded bio-oil that could be 

used for refinery feedstock. Phase separations are performed after low temperature 

hydrotreating and high temperature hydrocracking. The aqueous yield produced during 

catalytic hydroprocessing of the first 4 stages is mixed with the SF5-6, which are treated 

as the aqueous phase. The aqueous phase is processed using one stage of low 

temperature hydrotreating, one stage of high temperature hydrotreating, and FCC with 

zeolite as catalyst. Main products of the aqueous phase are olefins and aromatics. The 

process flow diagram is shown in Figure 2.1.  
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Figure 2.1 Process flow diagram for fast pyrolysis fractionation   

 

2.2 Data sources and major assumptions 

 

Figure 2.2 includes detailed schematic of the fast pyrolysis fractionation process. 

In this section, process description, main data sources, and major assumptions used in 

data processing of different areas of the conversion process are introduced, including.  
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Figure 2.2 Schematics of fast pyrolysis with upgrading 

 

a) Pretreatment 

Woody biomass (red oak) is used as feedstock in the process. During 

preprocessing, woody biomass is first dried to less than 10% moisture content, and then 

grinded to particles of 3mm in diameter. The pyrolysis reactor is a fluidized bed reactor 

operating at approximately 500 ℃. The solid particles such as ash and char are removed 

using high efficiency cyclone separators, which collect 95% of solid particles from the 

stream.  

b) Fast pyrolysis and fractionation 

In the pyrolysis oil recovery part, the temperatures are based on the design report 

for the fast pyrolysis fractionation process [19], shown in Figure 2.3. Different 
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compounds are captured as follows: SF1, levoglucosan and other compounds with high 

dew points; SF2, aerosols produced in the pyrolysis reactor or stage 1; SF3, compounds 

with dew points close to that of phenol; SF4, aerosols left from stage 2 or produced in 

stage 3; SF5, water and light oxygenated compounds such as acetic acid. Here it is 

assumed that the commercial scale industrial plant could perform the separation 

similarly as in the experiment setting. The non-condensable gas produced during fast 

pyrolysis will be separated out of SF6, and get combusted for heat.  

 
Figure 2.3 Pyrolysis oil recovery process 

 

Compositions of SF1-6 utilize the experiment data from the design report with 

red oak as the feedstock [19]. Composition of the NCG is also obtained from experiment 

data at Iowa State University under same condition. Table 2.1 listed data used. 

Table 2.1 Composition for the pyrolysis oil stage fractions (source: A.J. Pollard’s thesis 

2011) 

  Char SF1 SF2 SF3 SF4 SF5 SF6 NCG 

Mass Balance 21.7% 11.7% 13.2% 3.2% 6.2% 19.3% 1.1% 23.6% 
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Stage Fractions Compounds Analysis (wt% bio-oil) 

    SF1 SF2 SF3 SF4 SF5 SF6 Total 

Water  7.8% 7.7% 9.5% 12.9% 62.1% 62.1% 35.6% 

Char & Ash 24.0% 4.7% 0.7% 1.4% 0.5% 0.5% 2.2% 

Water Insoluble 40.0% 46.4% 6.9% 12.9% 0.8% 0.8% 25.7% 

Water Soluble 49.8% 41.2% 82.9% 72.8% 36.7% 36.7% 36.5% 

 
Levoglucosan 6.3% 3.6% 1.6% 1.6% 0.0% 0.0% 1.5% 

 
Acetic Acid 2.1% 2.0% 9.2% 9.2% 0.4% 0.4% 5.1% 

 
Furans 2.6% 1.3% 1.7% 1.7% 0.5% 0.5% 2.7% 

 
Phenols 1.6% 0.7% 1.2% 1.2% 0.3% 0.3% 2.3% 

 
Guaiacols 3.8% 1.7% 2.4% 2.4% 0.4% 0.4% 2.9% 

 
Syringols 6.6% 3.1% 2.5% 2.5% 0.3% 0.3% 2.0% 

 
Benzenediol 0.6% 0.3% 0.1% 0.1% 0.0% 0.0% 0.7% 

 
Other detected 7.9% 2.9% 8.3% 10.1% 5.7% 5.7% 14.8% 

  Other WS 18.3% 25.6% 55.9% 44.0% 29.1% 29.1% 4.5% 

 

c) Heavy ends upgrading 

In the heavy ends upgrading, we assume that SF1-2 contain most sugar products, 

and get extracted first. After sugar is removed, SF1-2 are combined with SF3-4 to form 

the heavy ends. The following hydrotreating process is operated at 340℃, 2000 psig 

with excess hydrogen flow. A three-way flash separates gas, aqueous and oil yield after 

hydrotreating. Hydrocracking is performed with the oil phase products from upstream 

hydrotreating, at 405℃, 1500 psig, also with large excess hydrogen flow. Another three-

way flash operates after hydrocracker to separate products of hydrocracking into gas, 

aqueous and oil yield. The oil yield from hydrocracking can be used as feedstock for the 

refinery. The aqueous yields from both hydrotreating and hydrocracking are used for the 

aqueous phase upgrading, and gas yields will be combusted and provide heat for fast 

pyrolysis reaction. 
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The composition for catalytic hydrotreating and hydrocracking outputs and 

hydrogen consumption data are from Elliott et al. [12], with mixed wood as feedstock. 

Table 2.2 includes the data used for heavy phase hydroprocessing.  

Table 2.2 Catalytic hydroprocessing of fast pyrolysis bio-oil (source: Elliott et al. 2009) 
 

Hydroprocessing yields 

Mixed wood 

Oil yield 

g/g dry feed 

Aqueous yield 

g/g wet feed 

Gas yield 

g/g carbon 

feed 

H2 

consumption 

liter/liter feed 

Hydrotreating (340C, 2000psig) 0.62 0.48 0.062 205 

Hydrocracking (405C, 1500 psig) 0.61 0.24 0.087 290 

 

Chemical components in hydroprocessing feed and product oil (average if multi-trials in source file)  

Hydrotreating Components Feed Oil Hydrocracking Components Feed Oil 

Unsaturated ketones/aldehydes 3.92 0.46 Unsaturated ketones 0.00 0.00 

Carbonyls (hydrooxyketones, 

aldehydes) 
9.32 1.09 Carbonyls (hydrooxyketones) 0.00 0.00 

Total alkanes 0.00 5.83 Naphthenes 4.22 69.99 

Saturated guaiacols (diol, ones) 0.00 0.38 Saturated guaiacols (diol, ones) 0.00 0.00 

Phenol and alkyl phenols 8.55 19.69 Phenol and alkyl phenols 15.68 0.00 

Alcohols and diols 6.41 3.95 Alcohols and diols 22.67 0.00 

HDO aromatics 0.00 0.65 HDO aromatics 10.51 12.61 

Total saturated ketones 1.05 21.25 Total saturated ketones 12.84 0.00 

Total acids and esters 30.80 24.77 Total acids and esters 11.89 0.00 

Total furans and furanones 5.76 1.60 Total furans and furanones 0.00 0.00 

Total tetrahydrofurans 3.03 3.42 Total tetrahydrofurans 3.28 0.00 

Complex guaiacols 17.37 7.25 Complex guaiacols 0.00 0.00 

Guaiacol and alkyl guaiacols 7.24 5.70 Guaiacol/syringols 18.91 0.00 

Unknowns 6.58 3.94 Straight-chain/branched alkanes 0.00 12.21 

      Unknowns 0.00 5.20 

 

In this study, the heavy phase (with more hydrophobic compounds) of the 

pyrolysis oil is used for hydroprocessing, thus, a higher oil yield from both hydrotreating 

and hydrocracking are expected. Because of the water content percentage difference, the 

yield amount does not completely match with data provided in Elliott’s paper. It is 

assumed that oil and gas yields are consistent with the paper, and the remaining 
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compositions are treated as the aqueous yield. We use typical NCG compositions for 

NCG and guarantee carbon balance, water percentages are assumed to be proportional to 

gas yield.  

d) Aqueous phase upgrading 

The aqueous yield from the heavy ends catalytic hydroprocessing is combined 

with SF5-6 from pyrolysis oil recovery form the aqueous phase. The aqueous phase 

upgrading employs an integrated process of two-stage hydrotreating and FCC. The low 

temperature hydrotreating uses Ru-based catalyst and operates at 200 ℃, 100 bar, while 

high temperature hydrotreating step uses Pt-based catalyst and operates at 260 ℃, 100 

bar, both steps consume hydrogen to complete the hydrogenation. The FCC step 

operates at 467 ℃, 100 bar, and uses zeolite to convert products from two-step 

hydrotreating into aromatics and olefins. The gas yield from aqueous phase will also be 

combusted and provide heat for pyrolysis reaction. 

The compositions of the outputs from low temperature hydrotreating, high 

temperature hydrotreating and FCC are based on Vispute et al. [16] (article and 

supporting material). Table 2.3 includes the data used for aqueous phase upgrading.  

Table 2.3 Two-step hydrotreating and FCC process 
Two-step hydrotreating output composition (show in wt% of yield) 

LT: Low temperature hydrotreating; HT: High temperature hydrotreating.  

Compounds 

LT 

output 

HT 

output Compounds 

LT 

output 

HT 

output 

pentane 0.00 0.38 2,3-butanediol 0.00 1.43 

hexane 0.00 3.02 Cyclohexanol 3.34 1.56 

Acetic acid 9.79 5.74 1,2-butanediol 1.16 5.64 

levoglucosan 14.82 0.00 tetrahydrofurfuryl alcohol 0.03 2.71 

sugars 2.08 0.36 1,4-butanediol 1.96 2.82 

methanol 2.52 3.32 γ-Butyrolactone 3.56 4.34 

ethanol 0.73 2.01 γ-Valerolactone  0.31 0.46 

1-propanol 0.31 1.55 Glycerol  0.00 2.73 
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tetrahydrofuran 0.00 0.20 1,2-Cyclohexanediol  3.32 3.80 

2-butanol 0.00 0.51 
4-Hydroxymethyl-γ-

butyrolactone  
2.42 1.84 

2-methyltetrahydrofuran 0.00 0.67 Sorbitol  18.85 1.21 

2,5-DimethylTetrahydrofuran 0.00 0.60 3-Methylcyclopentanol  0.00 1.03 

1-butanol 0.13 0.39 1,2,3-Butanetriol  0.00 1.41 

2-pentanol 0.00 0.14 1,4-Pentanediol  0.00 0.88 

1-pentanol 0.00 0.27 3-methylcyclohexanol  0.00 1.02 

ethylene glycol 24.80 26.30 4-methylcyclohexanol  0.00 0.61 

cyclopentanol 0.26 0.72 1,2-Hexanediol  0.00 0.99 

2-hexanol 0.00 0.24 1,2,6-Hexanetriol  0.00 0.58 

propylene glycol 9.61 18.52       

FCC output composition (show in wt% of yield) 

Compounds FCC output Compounds FCC output 

Benzene 3.99 Ethylene 12.00 

Toluene 7.37 Propylene 20.17 

Xylenes 2.86 Butylene 5.33 

Ethyl benzene 0.35 Olefins 37.50 

Styrene 0.21 Coke 4.31 

Indene 0.07 CO 8.44 

Naphthalene 0.07 CO2 34.41 

Aromatics 14.93 Undefined 0.41 

 

e) NCG treatment 

The non-condensable gases from fractionation process, the heavy ends 

hydrotreating and hydrocracking, and the aqueous phase upgrading are mixed together 

and burn in a combustor to provide heat for other reactions.  

3. Results and discussion 

3.1 Economic Analysis 

This project employs ChemCAD for the main process modeling, and Aspen 

Energy Analyzer for heat exchanging network modeling (based on ChemCAD energy 

balances). A summary of material flow for this process is included in Table 2.4. 

Table 2.4 Major material flows in fast pyrolysis fractionation process 

Input (dry basis) Fast Pyrolysis Fractionation 
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Woody biomass (metric ton/day) 2,000 

Hydrogen (kg/day) 2,000 

Output    

Liquid Fuels (mmgal/y) 19.3  

Aromatics (kg/day) 3,400 

Olefins (kg/day) 10,200 

Char (metric ton/day) 20 

Sugar (kg/day) 22,500 

NCG  Consumed to provide heat 

 

Installed equipment costs for a 2,000 metric ton per day (MTPD) fast pyrolysis 

fractionation facility are summarized in Figure 2.4. The costs of equipment involved in 

heat exchanging network are estimated separately using Aspen Energy Analyzer, which 

are included in “Heat Balance and Steam Generating”. Total installed equipment cost for 

the project is $158.6 million. Some equipment costs are from ChemCAD process model 

and Aspen Energy Analyzer, others are from existing literatures [11, 20-23]. Capital 

investment of the project is estimated based on assumptions shown in Table 2.5 [24]. 

 

Figure 2.4 Installed equipment costs 

 

Table 2.5 Capital investment estimation 
Total Purchased Equipment Cost (TPEC) 100% 

   Purchased Equipment Installation 39% 

   Instrumentation and Controls 26% 

3% 

14% 

8% 

40% 

25% 

10% 
Pretreatment (5.2 million$)

Pyrolysis and Fractionation (21.6 million$)

Heavy End Upgrading (13.3 million$)

Aqueous Phase Upgrading (63.4 million$)

Heat Balance and Steam Generating (40.0 million$)

Other (15.0 million$)
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   Piping 31% 

   Electrical Systems 10% 

   Buildings (including services) 29% 

   Yard Improvements 12% 

   Service Facilities 55% 

Total Installed Cost (TIC) 3.02 * TPEC 

Indirect Costs (% TPEC) 

    Engineering 32% 

   Construction 34% 

   Legal and Contractors Fees 23% 

Total Indirect Costs (IC) 89% 

Project Contingency (% TPEC) 78% 

Fixed Capital Investment (FCI) TIC+IC+Project contingency 

Working Capital (WC, % TPEC) 15.00% 

Land (% TPEC) 6.00% 

Total Project Investment (TPI) FCI+WC+Land 

Installation Factor TIC/TPEC=3.02 

Lang Factor TPI/TPEC=5.46 

 

Operating costs in this process include fixed operating costs and variable 

operating costs. The former costs include fixed labor, facility maintenance, insurance 

and taxes etc. while the latter contains raw materials (biomass, hydrogen, and catalysts), 

waste disposal, utilities (cooling water, and electricity), and by-product (biochar) credits. 

The costs of biomass, hydrogen, and catalysts are listed in Table 2.6. A summary of 

operating costs is in Table 2.7, and an annual operating cost of $101.8 million is 

incurred.  

Table 2.6 Cost of raw materials used in the conversion process 
Biomass [25] 81.45 $/dry metric ton 

Hydrogen  2 $/kg 

Pt [23] 56.29 $/kg 

Ru [23] 5.6 $/kg 

Zeolite [23] 1.6 $/kg 

Hydroprocessing catalyst [26] 15.5 $/lb 

 

Table 2.7 Annual operating costs for the conversion process 

 

$ million 

Fixed operating costs  15.7 

Variable operating costs 86.1 

    Biomass 69.4 

    Hydrogen 1.7 
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    Catalysts 8.2 

    Waste Disposal 1.7 

    Utilities 9.2 

    By-product credits -4.1 

The selling prices for the final products are assumed to be $3.00 per gallon for 

liquid fuels, and weighted average of various commodity chemical prices [23], $1.43 per 

kilogram for olefins, and $0.78 per kilogram for aromatics. Under these conditions, the 

project IRR is evaluated to be 8.78%. 

3.2 Sensitivity Analysis 

Sensitivity analysis of the fast pyrolysis fractionation facility is conducted to 

investigate the impacts of the uncertain factors on facility IRR. The parameters of 

interests include the selling prices of final products (chemical products and liquid fuels), 

product yield (liquid fuel, olefins and aromatics), major feedstock costs (biomass and 

hydrogen), and total capital investment. A 20% fluctuation is considered for optimistic 

and pessimistic cases.  

 

Figure 2.5 Sensitivity analysis 

 

2.00% 5.00% 8.00% 11.00% 14.00%

H2 Purchased Cost (+20%; 0%; -20%)

Aromatics Yield (-20%; 0%; +20%)

Toal Capital Investment (+20%; 0%; -20%)

Liquid Fuel Price (-20%; 0%; +20%)

Liquid Fuel Yield (-20%; 0%;+20%)

Olefins Yield (-20%; 0%; +20%)

Biomass Feedstock Cost (+20%; 0%; -20%)

Chemical Products Price (-20%; 0%; +20%)
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Figure 2.5 shows that main product yields and prices, total capital investment and 

biomass feedstock costs have major impact on the IRR. Take chemical products price as 

an example, a 20% increase in selling price increase IRR to 14.3%, while a 20% 

decrease in celling price change IRR to as low as 3.09%.  

4. Conclusions 

In this paper, the economic feasibility, of a fast pyrolysis fractionation facility 

producing both liquid fuels and commodity chemicals, is analyzed. Instead of single 

major product, two different upgrading methods are performed to different stage 

fractions of pyrolysis oil, and two major final products (liquid fuels and chemical 

products) are produced from heavy ends and aqueous phase oil. An 8.78% IRR is 

evaluated for the facility in a base condition, and sensitivity analysis shows that main 

products yields and selling prices, total capital investment and biomass feedstock costs 

have large influences on project IRR. 
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Abstract 

This work studies supply chain network design for the fast pyrolysis and 

hydroprocessing pathway, utilizing corn stover as feedstock to produce gasoline and 

diesel fuel. A Mixed Integer Linear Programming (MILP) model is formulated to 

optimize the fast pyrolysis and hydroprocessing facility locations and capacities to 

minimize total production cost. The economic feasibility of building a new refinery in 

Iowa is analyzed based on the supply chain configuration and the cost of transporting 

hydrotreated bio-oil to an existing petroleum refinery in Louisiana for refining to 

gasoline and diesel. 

1. Introduction 

Second generation biofuels are produced from non-food biomass, such as 

agricultural residues, and are less land- and water-intensive than first generation biofuels 

[1]. Cellulosic biofuel production pathways, such as fast pyrolysis with hydroprocessing, 

are expected to play an essential role in fossil fuel displacement, national energy 

security, greenhouse gas reduction, and rural economic development [2]. 
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In 2007, the U.S. government established the revised Renewable Fuel Standard 

(RFS2) as a means of replacing domestic petroleum-based fuel consumption with biofuel 

consumption. The RFS2 mandates the U.S. consumption of 36 billion gallons per year 

(BGY) of biofuels by 2022. Of this volume, 16 BGY must come from cellulosic biofuels 

[3]. The cellulosic biofuel volume standard for 2012 is 10.45 million gallons per year 

(MGY) [4], which is only 0.06% of the total RFS2 mandate for 2022; thus, cellulosic 

biofuel has a long way to go to reach the EPA goal. Feedstock production and logistics 

constitute 35% or more of the total production costs of advanced biofuel [5, 6], and 

logistics associated with moving biomass from land to biorefinery can make up 50–75% 

of the feedstock costs [7]. Total logistic cost along the supply chain constitutes 25% of 

the total fuel cost [8]. Collectively, the supply system activities of harvest, collection, 

storage, preprocessing, handling, and transportation, represent one of the largest 

challenges to the cellulosic biofuels industry. It becomes very important to investigate 

the supply chain of biofuel production system [9]. 

Thermochemical biofuel production pathways offer opportunities for rapid and 

efficient processing of diverse feedstock into fuel and chemicals [10-12]. Fast pyrolysis 

is a thermochemical process that can be used to convert lignocellulosic biomass into 

three different products: bio-oil, biochar, and non-condensable gases (NCG) [13]. Bio-

oil is a viscous and corrosive liquid that must be upgraded prior to refining, which can 

occur either onsite (at a decentralized fast pyrolysis facility) or at a conventional 

petroleum refinery with some adjustments. Upgrading can be accomplished either 

catalytically via fluid catalytic cracking or by reaction with hydrogen via 
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hydroprocessing. Hydroprocessing is generally performed in two steps: hydrotreating 

occurs under low-severity conditions and deoxygenates and desulfurizes the raw bio-oil, 

while hydrocracking occurs under high-severity conditions and depolymerizes the bio-

oil into low-molecular weight hydrocarbons. Hydroprocessed bio-oil undergoes a 

refining step in which it is split into separate hydrocarbon streams according to boiling 

range that are then blended into gasoline and diesel fuel. Onsite hydroprocessing and 

refining incurs high capital and operating costs but yields high-value biobased gasoline 

and diesel fuel that can utilize the existing transportation fuel infrastructure for transport 

to the point of final consumption [14]. Alternatively, pyrolysis bio-oil can be 

hydrotreated onsite and then transported to a conventional petroleum refinery, where it is 

hydrocracked and refined to biobased gasoline and diesel fuel. While this second 

distributed processing scenario incurs lower capital and operating costs than the first 

centralized processing scenario, the bio-oil producer will not receive as much value for 

the hydrotreated bio-oil as its counterpart, the refinery. 

Several previous studies report the costs of producing biobased hydrocarbons via 

fast pyrolysis and upgrading [14-16], few investigate the impact of biofuel supply chain 

network design, such as facility locations and capacities. Fast pyrolysis facility location 

and capacity decisions are essential in the biofuel supply chain network design, due to 

the high capital costs, longevity, and inflexibility to make changes for fast pyrolysis 

facilities. Wakeley et al. evaluate [17] transportation impacts using a linear optimization 

model and conclude that feedstock and ethanol transport are significant cost components 

in corn- and cellulose-based biofuel production. 
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Supply chain management is a relatively well-studied research area. The 

literature in supply chain design, modeling, and policy analysis is summarized by Shah 

[18]. Tsiakis et al. proposed [19] a mixed integer linear programming (MILP) model for 

the design and operation of general supply chain networks. The model minimizes total 

costs involved (including infrastructure costs, production cost, material handling costs, 

and transportation costs, etc.) due to quality, production and supply restrictions, and 

material flow balance. A broad review on generic supply chain models and their 

applications to the biofuel and petroleum-based fuel industries over the last decade is 

provided in An et al. [20]. A mathematical programming model for the optimal 

placement of distributed biorefineries is presented in Bowling et al. [21], with the 

objective of maximizing total net profit considering transportation costs and operating 

and capital costs for the facilities. Ekşioğlu et al. proposed [22] a model coordinating the 

long-term decisions of supply chain design, and the medium- and short-term decisions of 

logistics management of the biomass-to-biorefinery supply chain. Kocoloski et al. 

discussed [23] the impact of facility sizing and location on the cellulosic ethanol 

industry, and the infrastructure investment is modeled with a mixed integer program 

(MIP). Some research in simulating the biomass supply chain for biomass processing, 

transportation, and storage has also been conducted [24, 25]. However, the supply chain 

design for neither a fast pyrolysis facility and biorefinery network, nor facility capacities 

has been studied in the literature, which is the motivation of this study. This is the first 

analysis to investigate the supply chain design and configuration for a distributed 

processing network for a thermochemical production pathway. 
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This study considers the production of gasoline and diesel fuel from corn stover 

via decentralized fast pyrolysis and mild hydrotreating with centralized hydrocracking 

and refining. A mixed-integer linear programming (MILP) model is formulated to 

optimize the fast pyrolysis and hydroprocessing facility locations and capacities. As a 

case study, the state of Iowa is selected. The economic feasibility of building a new 

biorefinery in Iowa is compared to utilizing an existing petroleum refinery in Louisiana.  

The rest of this chapter is organized as follows: Section 2 presents two location-

allocation models dealing with the two refinery choices (building one in Iowa or 

utilizing an existing one in Louisiana). Problem statement, mathematical notations, and 

model formulation are introduced. The numerical examples are illustrated in Section 3 

with scenario descriptions, data sources, and the result analysis. The economic 

comparisons between the two scenarios are also illustrated. Section 4 concludes with a 

discussion of the results and a summary of managerial findings. 

2. Methodology 

In this section, a problem statement for the distributed biorefinery supply chain 

network design is presented, mathematical notations are introduced, and the mixed 

integer linear programming models are detailed. 

2.1 Problem statement 

A typical biofuel supply chain includes feedstock production, feedstock 

transportation, biofuel conversion, and biofuel distribution. Figure 3.1 provides a 

schematic of the fast pyrolysis and hydroprocessing pathway. The corn stover feedstock 

is first collected and shipped to the distributed fast pyrolysis facility where it is 
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converted to raw bio-oil. The raw bio-oil is treated with hydrogen to remove impurities 

and reduce its oxygen content at the distributed fast pyrolysis processing sites. The 

distributed fast pyrolysis processing unit is illustrated by the components within the 

dashed box in Figure 3.1. The hydrotreated bio-oil then undergoes hydrocracking (a 

reaction with hydrogen under more severe conditions than hydrotreating to depolymerize 

the high molecular weight compounds in the hydrotreated bio-oil) and refining (splitting 

of the bio-oil hydrocarbon fractions by molecular weight and blending to yield biobased 

gasoline and diesel fuel) to yield transportation fuels. The hydrocracking and refining is 

done at a centralized location due to the economies of scale [14]. A decision has to be 

made as to whether to utilize existing refining capacity in a non-optimal location 

(refinery in Louisiana in the Iowa case study) or an optimally located new refinery. The 

refinery siting decision implies a trade-off between the capital investment for the new 

biorefinery and the transportation costs to move the bio-oil between the distributed fast 

pyrolysis facilities and the existing refinery.  

Pyrolysis bio-oil

Hydroprocessed bio-oil Gasoline

Fast Pyrolysis Upgrade Refine

Biomass
 

Figure 3.1 Fast pyrolysis – upgrading – refining process of biomass converting to 

transportation fuel 
 

A supply chain network design framework is formulated to identify the optimal 

locations and capacities of fast pyrolysis and hydroprocessing facilities. Two modeling 

scenarios for the upgrading facility siting are considered: Scenario 1 assumes that the 

file://iastate.edu/cyfiles/yihuali/Desktop/temp.docx%23_ENREF_14
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hydrotreated bio-oil is transported to an existing petroleum refinery in Louisiana for 

hydrocracking and refining, while Scenario 2 assumes that a new refinery is built in 

Iowa. The mathematical model identifies the optimal location of the centralized refinery 

in Scenario 2. 

2.2 Mathematical notations in the model 

The mathematical notations utilized in the model are listed in  

Table 3.1. Figure 3.2 summarizes the notations utilized in the model 

formulation. 

 

Table 3.1 Subscripts, parameters, and decision variables 

Subscripts 

             Biomass supply locations 

             Candidate facility locations 

             Gasoline and diesel fuel demand locations 

             Allowed bio-refinery capacity levels 

           Candidate refinery locations 

Parameters 

    
   

         Total biomass supply of biomass supplier   

    
   

         Total gasoline demand of gasoline demand location   

  
   

         Capacity of fast pyrolysis facility at level   

  
   

  Conversion ratio, ton of upgraded bio-oil per dry ton of 

biomass 

  
   

  Conversion ratio, ton of gasoline per ton of upgraded bio-oil 

    
   

       The distance from supply location   to candidate facility 

location   

  
 
       The distance from candidate facility location j to fixed 

refinery 

    
 
       The distance from candidate facility location   to candidate 

refinery location   

  
 
       The distance from fixed refinery location to gasoline demand 

location   

    
 
       The distance from candidate refinery location   to gasoline 

demand location   

  
          Circuity factor for truck 

  
          Circuity factor for pipeline 
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       Biomass collecting cost of supply location    

         Loss factor, the weight percentage loss of biomass during 

collection and transportation 

  
    

       Fixed cost for biomass shipping using truck 

  
    

      
      

Variable cost for biomass shipping using truck 

      
   

       Biomass shipping cost from supply location   to candidate 

facility location   
        

    
          

  
    

      
      

Variable cost for hydrotreated bio-oil shipping using truck 

    
 
       Hydrotreated bio-oil shipping cost from candidate facility 

location j to fixed refinery 

       
         

      
 
       Hydrotreated bio-oil shipping cost from candidate facility 

location   to candidate refinery location   

        
          

  
    

      
      

Variable cost for biomass shipping using truck 

    
 
       Biomass shipping cost from fixed refinery location to 

gasoline demand location    
       

         

      
 
       Biomass shipping cost from candidate refinery location   to 

gasoline demand location   

         
           

    
   

   Fixed facility cost for capacity level   

    
   

       Leveled facility capacity 

              Conversion cost per gallon gasoline 

  
 
       Refinery capacity 

Decision Variables 

       Total annual production cost excluding conversion cost 

    
        

Amount of biomass transport from supply location   to 

candidate facility location   

  
      

Amount of hydrotreated bio-oil transport from 

candidate facility location   to fixed refinery 

    
      

Amount of hydrotreated bio-oil transport from 

candidate facility location   to candidate refinery 

location   

   
      Amount of gasoline and diesel fuels transport from 

refinery location   to demand location   

    
   

        If a fast pyrolysis facility of capacity level   exists in 



www.manaraa.com

32 

candidate facility location   
  

         If a refinery exists in candidate refinery location   

1 
Parameters (or variables) for modeling scenario 1: utilizing existing refinery location 

2 
Parameters (or variables) for modeling scenario 2: building a new refinery at an optimal 

location 

 

 

Figure 3.2 Notation diagram for facility location and capacity decision model 

 

2.3 Mixed integer linear programming model 

A mixed integer linear programming (MILP) model is developed to identify the 

optimal locations and capacities for fast pyrolysis facilities in order to minimize the total 

system cost along the supply chain. Two scenarios are considered for the centralized 

upgrading and refining facility siting. In Scenario 1, the upgrading and refining is taking 

place in an existing non-optimally located facility, where Scenario 2 considers an 

optimally located centralized refining facility. 

Scenario 1: Use existing refinery 
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The model for Scenario 1 identifies the optimal locations and capacities for the 

distributed fast pyrolysis and hydrotreating facility network where the hydrotreated bio-

oil is hydrocracked and refined at an existing refinery.  

The objective function is to minimize the total annual cost, which includes 

biomass collection cost, biomass transportation cost, amortized fast pyrolysis facility 

capital cost, hydrotreated bio-oil shipping cost, and gasoline and diesel distribution cost. 

      ∑∑               

 

   

 

   

 ∑∑       

 

   

 

   

 ∑      

 

   

 ∑    

 

   

     

The constraints include that (1a) the total biomass shipped from the biomass 

supplier does not exceed the supplier’s total available biomass; (1b) the amount of 

hydrotreated bio-oil produced in a facility is based on the amount of biomass shipped to 

that facility and the conversion rate based on experimental data; (1c) the total amount of 

biomass shipped to the fast pyrolysis facility does not exceed facility capacity; (1d) no 

more than one facility can be located at each candidate site; and (1e) the gasoline and 

diesel fuel produced meet the biofuel demand . 

∑    

 

   
         {biomass availability} (1a) 

             ∑    

 

   
    {biofuel conversion} (1b) 

∑    

 

   
 ∑      

 

   
    {facility capacity} (1c) 

∑    
 

   
      {one facility at each site} (1d) 

  ∑   
 

   
 ∑     

 

   
 {satisfaction of demand} (1e) 

             {   }           (1f) 
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Scenario 2: Build a new biorefinery 

In Scenario 2, in addition to optimizing the locations and capacities of the 

decentralized fast pyrolysis facilities, the objective is to optimize the integrated biofuel 

production network, including the location of the new centralized biorefinery.  

The objective function in Scenario 2 is also to minimize the total annual cost. 

The difference is that instead of incurring the transportation cost of mildly hydrotreated 

bio-oil to an existing refinery site, the system incurs the transportation costs to the 

optimally located biorefinery. The annual cost reduction from Scenario 1 to Scenario 2 is 

to analyze the economic feasibility of building a centralized biorefinery.  

      ∑∑               

 

   

 

   

 ∑∑       

 

   

 

   

 ∑∑        

 

   

 

   

 ∑ ∑         

 

   

 

   

 

The majority of the constraints are similar to those of Scenario 1. Distinctions in 

the constraints include: (2e) hydrotreated bio-oil is shipped to an optimally located 

biorefinery; (2f) only one refinery is being planned to cover the upgrading and refining 

need; and (2h) the produced transportation fuel is shipped from the local biorefinery. 

∑    

 

   
         {biomass availability} (2a) 

∑    
 

   
           ∑    

 

   
    {biofuel conversion} (2b) 

∑    

 

   
 ∑      

 

   
    {facility capacity} (2c) 

∑    
 

   
      {one facility at each site} (2d) 

              {refinery capacity } (2e) 



www.manaraa.com

35 

∑   

 

   
   {one refinery to build} (2f) 

  ∑ ∑    
 

   

 

   
 ∑     

 

   
 {satisfaction of demands} (2g) 

                {biofuel distribution} (2h) 

                 {   }           (2i) 

   

It should be noted that the total annual costs for both scenarios should also 

include the conversion costs from biomass to hydrotreated bio-oil. Since both scenarios 

will satisfy the same total demands, the amount of biofuel produced will be the same. 

Therefore, the bio-oil conversion costs will be the same for both scenarios and thus will 

not impact the supply chain network decisions. The authors decide not to include the 

bio-oil conversion cost in the objective function but incorporate it into the scenarios’ 

comparison.  

3. Numerical examples 

The state of Iowa is chosen as the region of interest in the numerical example. 

Corn stover accounts for the major cellulosic biomass in Iowa. The goal of the biofuel 

supply chain design is to identify the locations and capacities for the distributed fast 

pyrolysis facilities in Iowa. Two scenarios are investigated regarding the centralized 

refinery locations: (1) transporting the mildly-hydrotreated bio-oil to the existing 

refinery in Louisiana for hydrocracking and refining; and (2) building a new biorefinery 

in Iowa to enable local refining of the mildly-hydrotreated bio-oil.  

3.1 Data sources 

We consider each county of Iowa as a potential biomass (corn stover) supplier. 

The annual available weight of corn stover is estimated based on the corn yield 
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considering the residue-to-grain ratio [26]. The county level corn production is from the 

National Agricultural Statistics Service (NASS) [27]. The National Resources 

Conservation Service (NRCS) Soil Quality Team suggests that farmers must be careful 

when removing residues, which perform many positive functions for soils in the agro-

ecosystem [28].  Papendick et al. shows [29] that a 30% removal rate results in 93% soil 

cover after residue harvest. In this study, we assume that the maximum biomass supply 

is 70% of total available corn stover. The county-level corn stover supply distribution is 

shown in Figure 3.3. The stover collection cost is calculated based on the amount to be 

collected and machinery to be utilized. The collection methods differ due to the amount 

of stover collected at each county. Different regression equations are used for cost based 

on different ranges of corn stover collection quantities [30]. Biomass losses are 

incorporated for the collection and transportation process. It is assumed to be 5 wt% 

(weight percentage) in this study. 
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Figure 3.3 County-level corn stover supply distribution (2007) 

 

The main product is transportation fuels. The gasoline demand is assumed to be 

proportional to the population of metropolitan statistical areas (MSAs). The total 

gasoline demand of Iowa is obtained from state-level gasoline consumption data 

provided by the Energy Information Administration (EIA) [31]. The individual gasoline 

demand of MSAs in Iowa is shown in Figure 3.4. 

 

Figure 3.4 MSA-level gasoline demand distribution (2009) 

 

The candidate locations for the distributed fast pyrolysis facilities are at the 

county centroids. In Scenario 2 where the centralized refinery site is to be determined, 

the candidate refinery locations are also assumed to be the county centroids in Iowa. 

Transportation distances for biomass, bio-oil and final transportation fuel are calculated 

using great circle distances. The actual transportation distances are modified with 

file://iastate.edu/cyfiles/yihuali/Desktop/temp.docx%23_ENREF_31
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circuity factors considering the difference in the transportation modes (e.g. 1.22 = truck 

circuity factor, 1.10 = oil pipe circuity factor) [32].  

Stover transported via truck incurs a distance fixed cost of $4.39/ton and a 

distance variable cost of $0.19/ton-mile [33]. The transportation cost of hydrotreated 

bio-oil via truck is assumed to be equal to the national average truck shipping cost of 

$0.26/ton-mile [34]. The transportation cost of gasoline via pipeline is assumed to be 

equal to the national average oil pipeline cost of $0.027/ton-mile [34]. 

The distributed fast pyrolysis facility in this study converts corn stover using 

fluid bed pyrolyser and other common equipment found in thermochemical conversion 

facilities. In a hydrogen-purchase fast pyrolysis and upgrading scenario, conversion 

ratios are 0.63 for the bio-oil yield from biomass and 0.42 for the fuel yield from bio-oil 

[14]. Unit conversion cost is estimated with total annual operating cost of a hydrogen-

purchase fast pyrolysis and upgrading scenario at approximately $1.18/gallon [14].  

In the numerical examples, we consider four available capacity levels: 400 

ton/day, 1000 ton/day, 1500 ton/day, and 2000 ton/day. The capital facility cost is the 

total project investment minus working capital and land. The capital cost of the fast 

pyrolysis facility with a capacity of 2,000 metric tons per day of stover feedstock is $200 

million (assuming a hydrogen purchase plant) [14], and the capital costs for other 

capacity levels are estimated using a facility capital scaling factor of 0.6: 

(
         

         
)
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The objectives of both scenarios models are to minimize the annual total cost. 

Therefore, an amortized facility capital cost is calculated for a fast pyrolysis facility with 

a 20-year life and an interest rate of 10%. 

3.2 Numerical results 

Scenario 1: Use an existing refinery in Louisiana  

Scenario 1 determines the optimal decentralized fast pyrolysis facility 

locations and capacities. The mildly-hydrotreated bio-oil is hydrocracked and refined 

in an existing biorefinery in Louisiana.  

The optimal distributed fast pyrolysis facility locations are illustrated in 

Figure 3.5. Different shaped points mark the facility locations of different capacity 

levels: a pentagon represents a 400 ton/day facility, a triangle represents a 1000 ton/day 

facility, a square represents a 1500 ton/day facility, and a circle represents a 2000 

ton/day facility. The shaded counties provide biomass to the fast pyrolysis facilities and 

all biomass is from the same county as the location of the past pyrolysis facility. The 

stars are the centroids of the MSAs. The sizes of the stars illustrate the magnitude of the 

fuel demand from the MSAs. The predetermined refinery location is in Louisiana. 
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Figure 3.5 Optimal fast pyrolysis facility locations for scenario 1 

 

The numbers of facilities of each capacity level are: 

400 ton/day 1000 ton/day 1500 ton/day 2000 ton/day 

2 17 9 7 

In this scenario, the optimal value of the total annual production cost (excluding 

the bio-oil conversion costs) is $2.51 billion. Itemized costs are listed in Table 3.2. 

Table 3.2 Itemized costs and percentage of total annual cost for scenario 1 

Corn stover collecting cost $357,000,000 14.2% 

Fast pyrolysis facility capital cost $563,000,000 22.5% 

Corn stover shipping cost $56,000,000 2.2% 

Hydrotreated bio-oil shipping cost $1,464,000,000 58.4% 

Gasoline and diesel fuel shipping cost $66,000,000 2.6% 

Total (excluding conversion cost) $2,506,000,000 100.0% 

Total (including conversion cost) $3,892,000,000 
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Scenario 2: Build new refinery in Iowa 

Scenario 2 determines the optimal decentralized fast pyrolysis facility 

locations and capacities. It also determines the location of a new biorefinery in Iowa. 

Figure 3.6 shows the supply chain network configuration for Scenario 2. 

Different shapes are used to mark locations of different capacity facilities (pentagon – 

400 ton/day, triangle – 1000 ton/day, square – 1500 ton/day, circle – 2000 ton/day), and 

the cross-shaded county is chosen to build the biorefinery. Feedstock transport from 

counties outside of the facility-located county is illustrated with arrows.  

 

Figure 3.6 Optimal fast pyrolysis facility and biorefinery locations for scenario 2 

 

The numbers of facilities of each capacity level are: 
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400 ton/day 1000 ton/day 1500 ton/day 2000 ton/day 

0 0 0 18 

In this scenario, the optimal annual total production cost (excluding the bio-oil 

conversion costs) is $880 million. Itemized costs are listed in Table 3.3. 

Table 3.3 Itemized costs and percentage of total annual cost for scenario 2 (excluding 

the capital cost for the centralized biorefinery) 

Corn stover collecting cost $311,000,000 35.3% 

Fast pyrolysis facility capital cost $382,000,000 43.4% 

Corn stover shipping cost $64,000,000 7.3% 

Hydrotreated bio-oil shipping cost $110,000,000 12.5% 

Gasoline and diesel fuel shipping cost $13,000,000 1.5% 

Total (excluding conversion cost) $880,000,000 100.0% 

Total (including conversion cost) $2,266,000,000 
 

 

3.3 Analysis and discussion of results 

Comparison between two scenarios 

In section 3.2, the computational results of the biofuel supply chain network 

design for the two modeling scenarios are presented. Both models use MILP formulation 

to identify optimal fast pyrolysis facility locations and capacities based on minimizing 

total annual costs along the supply chain. In Scenario 1, an existing petroleum refinery in 

Louisiana is chosen to hydrocrack and refine hydrotreated bio-oil to produce liquid 

transportation fuels. In Scenario 2, the supply chain network design model identifies the 

optimal location of a new biorefinery in Iowa for the purpose of bio-oil hydrocracking 

and refining.  

From Figure 3.5 and Figure 3.6, it should be noted that feedstock is primarily 

from the county where the facilities are built which reduces the transportation costs. In 

Scenario 2, all facilities employ the highest available capacity level of 2000 ton/day, 
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because a larger capacity facility is more cost-effective due to the facility capital scaling 

factor (the economics of scale). Though this still holds for Scenario 1, some smaller 

facilities are also built to balance the facility capital cost and corn stover transportation 

cost.  

 

Figure 3.7 Itemized annual costs for scenarios 1 and 2 

 

It is also demonstrated in Figure 3.5 and Figure 3.6 that optimal facility locations 

tend to be closer to the refinery. In Scenario 1, the optimal facility locations are 

primarily in the southern part of Iowa. However, the mid-southern counties are not 

chosen to build a fast pyrolysis facility, nor are they chosen as feedstock supply 

locations. This is because of their low biomass availability of those counties. If a fast 

pyrolysis facility is built, high biomass shipping cost will subsequently occur. Therefore, 

the supply chain network design model demonstrates the capability of managing the 

trade-off of biomass and bio-oil transportation costs. In Scenario 2, both the fast 

pyrolysis facilities and refinery are optimally located in the northern counties due to high 
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feedstock availability in northern Iowa. This reduces both the distance of stover shipping 

and the total production cost. Figure 3.7 includes a bar chart for the comparison of the 

itemized costs for Scenarios 1 and 2. In Table 3.4, the itemized costs, total production 

cost, and unit cost per gallon of liquid fuel for both scenarios are illustrated. 

Table 3.4 Annual itemized costs comparison between scenario 1 and 2 

  Scenario 1 Scenario 2 

Corn stover collecting cost $357,000,000 $311,000,000 

Fast pyrolysis facility capital cost $563,000,000 $382,000,000 

Corn stover shipping cost $56,000,000 $64,000,000 

Hydrotreated bio-oil shipping cost $1,464,000,000 $110,000,000 

Gasoline and diesel fuel shipping cost $66,000,000 $13,000,000 

Total $2,506,000,000 $880,000,000 

Cost per gallon gasoline and diesel fuel $2.13 $0.75 

Cost per gallon gasoline and diesel fuel 

(with conversion cost) $3.31 $1.93 

 

The fast pyrolysis conversion costs are not included in the objective function in 

the model formulation. This is because the facilities will produce the same amount of 

biofuel for both scenarios; therefore, the fast pyrolysis conversion operating costs will be 

the same and will not affect the location and capacity decisions. In the total production 

cost analysis, the fast pyrolysis conversion operating cost is assumed to be $1.18/gallon 

(Wright et al., 2010). Both Figure 3.7 and Table 3.4 show that total transportation cost 

accounts for a much larger proportion of total annual cost in Scenario 1 than in Scenario 

2. The cost difference between the two scenarios is primarily due to the shipping costs of 

both the hydrotreated bio-oil and the final biofuel products. This is due to the difference 

in biofuels transportation distance between the refinery in Louisiana and the one in Iowa 

as shown in Table 3.5. 
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Table 3.5 Comparison of average distances between facility, refinery and demand 

locations between scenarios 

  Scenario 1 Scenario 2 

Average hydrotreated bio-oil shipping 

distance (mile) 
740.2 55.6 

Average gasoline and diesel fuel 

shipping distance (mile) 
759.7 145.0 

 

The annual reduction of $1.62 billion (calculated from Table 3.4) could break 

even the amortized capital cost of a 30-year refinery with $15.3 billion total capital cost, 

which shows the economic potential of building a new refinery in Iowa rather than 

shipping hydrotreated bio-oil to an existing refinery.  

Sensitivity on biomass availability 

To investigate the sensitivity of the biomass availability to the supply chain 

network design, we examine two other corn stover availability scenarios. This analysis is 

motivated by the potential variation in stover availability due to uncertainty caused by 

weather, pests, etc. Different total annual costs considering stover supply availability are 

listed below. 

  Scenario 1 Scenario 2 

80% corn stover availability $2,520,000,000 $893,000,000 

100% corn stover availability $2,506,000,000 $880,000,000 

120% corn stover availability $2,499,000,000 $872,000,000 

The fast pyrolysis facility locations and capacities remain unchanged. However, 

the biomass flows change with corn stover availability. Increased stover availability 

provides higher flexibility in feedstock source choices, consequently reducing total cost, 

while lower corn stover availability increases total cost. The change in the total cost is 

not very significant, which validates the robustness of the proposed biofuel supply chain 

design framework.  
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Different refinery location 

In Scenario 2, the refinery location is an important decision for stakeholders. We 

have presented the results when the refinery is optimally located in Iowa.  In this section, 

the impact of the Iowa refinery location is investigated.   

 

Figure 3.8 Optimal facility configurations for the pessimistic case 

 

The authors study the pessimistic scenario where the worst location is selected 

for the Iowa biorefinery. The supply chain configuration result is shown in Figure 3.8. 

The cost comparison between the optimal case and this pessimistic case is shown in 

Table 3.6. As shown in Figure 3.8, the distributed fast pyrolysis facility locations are 

highly related to biorefinery location. With the biorefinery poorly located, fast 

pyrolysis facilities are chosen to balance feedstock availability and hydroprocessed 

bio-oil shipping distances. Consequently, shipping cost increase significantly. Some 



www.manaraa.com

47 

facilities have smaller capacities because they are located in counties with 

insufficient biomass supplies, and this causes additional facility capital cost. It can be 

seen from Table 3.6 that the optimally located refinery can significantly reduce total 

annual cost, and most especially shipping cost.    

Table 3.6 Itemized costs comparison between optimal refinery case and pessimistic case 

  Optimal Case Pessimistic Case 

Corn stover collecting cost $311,000,000 $342,000,000 

Facility capital cost $382,000,000 $411,000,000 

Corn stover shipping cost $64,000,000 $68,000,000 

Hydrotreated bio-oil shipping cost $110,000,000 $216,000,000 

Gasoline and diesel fuel shipping cost $13,000,000 $16,000,000 

Total $880,000,000 $1,053,000,000 

 

Summary  

Supply chain network design and optimization are essential to the successful 

deployment of the advanced biofuel production. This study investigates a biofuel supply 

chain network design for pathways with distributed bio-oil production and centralized 

upgrading operations. It demonstrates that facility location and capacity decisions from 

this supply chain optimization framework can be effectively applied in the biofuel 

industry, and can significantly improve supply chain network performance, thus 

reducing total system costs. Biomass feedstock sourcing and biofuel distribution 

planning decisions are studied to provide managerial insights for investment decision 

making. 

This study identifies the optimal facility locations and capacities for the 

production of gasoline and diesel fuel from corn stover via fast pyrolysis and 
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hydroprocessing. Facility location and capacity decisions have a direct impact on the 

costs along supply chain, including feedstock transportation cost, biofuel production 

cost, and biofuel distribution costs. The numerical results in the case study demonstrate 

that transportation/logistic costs contribute significantly to total production cost.  

The economic feasibility of a fast pyrolysis and hydroprocessing facility is 

maximized when transportation costs are reduced via the optimization of facility 

locations and capacities. This is true for both modeling scenarios for the bio-oil 

upgrading and refining facility. In Scenario 2, locating a refinery in Iowa has the 

advantage of reducing the shipping costs of the hydrotreated bio-oil and the end product 

biofuel. Building a refinery in Iowa could reduce the unit cost of gasoline from $3.31 to 

$1.93 per gallon. The total cost reduction per year, $1.62 billion, demonstrates the 

potential economic feasibility of building a new refinery in Iowa.  

 

 

4. Conclusion 

Mixed integer linear programing models are formulated to analyze facility 

location and capacity decisions for the production of gasoline and diesel fuel. The 

pathway under investigation is fast pyrolysis of corn stover and hydroprocessing to 

produce biofuel. The economic feasibility of building a new upgrading refinery in Iowa 

is analyzed. It should be noted that the optimization models provide the flexibility to 

adaptively analyze biofuel supply chain design problems at various scales. For future 

research, the framework developed in this study can be extended to study operational 
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planning and sequential facility siting problems. Furthermore, uncertainties can also be 

incorporated.  
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CHAPTER 4 A SEQUENTIAL FAST PYROLYSIS FACILITY LOCATION-

ALLOCATION MODEL 

Modified from a paper to be submitted to AMPS 13: Sustainable Production and Service 
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Abstract 

The revised Renewable Fuel Standard (RFS2) mandates the U.S. to consume16 

billion gallons per year (BGY) of biofuels from cellulosic biomass by the year 2022. 

Fast pyrolysis of biomass is a renewable conversion process developed for producing 

liquid transportation fuels, such as gasoline and diesel. 

The pathway investigated in this study is fast pyrolysis and hydroprocessing to 

produce transportation fuels from corn stover. A mathematical model is formulated to 

study the supply chain design problem. The objective is to optimize an orderly fast 

pyrolysis facility locations and capacities that maximize the net present value (NPV) of 

the total profit for the next 10 years (2013-2022). Numerical examples for Iowa are also 

presented. 

1. Introduction 

Biofuels has been recognized as important sources of energy for their potential 

benefit on the environment, rural development, and reducing dependency on petroleum 

import. With the stimulation of enactment of Renewable Fuel Standard (RFS2) [1] in 
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2007, cellulosic based biofuels are gaining more attention. These biofuels may help with 

meeting goals of different types of policies[2]. Cellulosic biofuels technologies are still 

mainly on the experimenting stage [3, 4],  studies on biomass logistics and biofuel 

supply chain management are also emerging [5-8].  

In this paper, a sequential location problem of fast pyrolysis facilities is 

investigated. Formulations are presented in Methodology, and Iowa case study results 

and discussions are shown in Results and Discussion. Paper concludes with Conclusions 

with major findings and future work suggestions. 

 

2. Methodology 

2.1 Problem descriptions 

This study considers lignocellulosic biomass as the feedstock for fast pyrolysis 

facility to produce bio-oil, and the bio-oil will be used as feedstock of biorefinery, where 

it is converted to liquid transportation fuels. Figure 4.1 illustrates the supply network 

setting.  
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Figure 4.1 Supply chain structure for cellulosic biomass pyrolysis – hydroprocessing –

refining process 

 

2.2 Major assumptions 

Major assumptions used in modeling are listed below: 

1. Facility construction time is one-year and facility life is 20-year. 

2. A biorefinery with enough capacity exists in Iowa, and the location of the biorefinery 

is the county centroid that minimizes the total annual cost if all fast pyrolysis 

facilities are at optimal locations and capacities. 

3. The facility location and material (feed and products) allocation decisions are made 

to maximize the total profit of all the facilities as a system. 

4. The requirement for Iowa biofuel consumption in transportation increase linearly 

from 2013 to 2022, with demand in 2013 set at 0, and in 2022 set as the total 

gasoline demand within Iowa.  

5. Fast pyrolysis and hydroprocessing for the cellulosic biomass are performed at 

distributed fast pyrolysis facility, while the hydroprocessed bio-oil are refining to 

gasoline/diesel range fuels in a centralized biorefinery.  

6. Annual budget is set for construction of the distributed fast pyrolysis facilities. 

2.3 Model formulation 

Notations: 

  index for biomass supply locations 

  index for candidate fast pyrolysis facility locations (all county centroids in Iowa) 

  index for gasoline demand locations (all MSA
1
 centroids in Iowa) 

  index for fast pyrolysis facility capacity level 

  index for time period (decision making time) 

                                                 
1
 MSA: metropolitan statistical area 
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    projected gasoline price [9] 

     unit biomass collecting cost [10] 

      unit biomass shipping cost [11, 12],                  , which is a 

combination of fixed shipping cost and variable shipping cost (related to shipping 

distance) 

     unit hydroprocessed bio-oil shipping cost [12, 13] 

     unit gasoline shipping cost [13] 

     fixed facility operating cost [4] 

    gasoline conversion cost, derived from variable facility operating cost, related to 

facility operating level (proportional to gasoline production amount) [4] 

     fast pyrolysis facility capital cost, using scaling factor of 0.6 [4] 

     amortized fast pyrolysis facility capital cost, derived from facility capital cost, 

with facility life of 20-year [4] 

      maximum biomass supply amount, total corn stover available amount [14, 15] 

times maximum removal proportion [16] 

     biomass loss during transportation, assumed to be 5 wt% here 

   conversion ratio from cellulosic biomass to hydroprocessed bio-oil [4] 

   conversion ratio from hydroprocessed bio-oil to gasoline diesel fuel [4] 

   ̅̅ ̅̅ ̅̅ ̅
  total gasoline demand level [17] 

     gasoline demand,      ∑    ̅̅ ̅̅ ̅̅ ̅
      ,     is the mandate proportion of 

total demand to be satisfied during the     year 

   fund raised from government or company 

  annual interest rate, assumed to be 10% 

     cellulosic biomass shipping amount (decision variable) 

    hydroprocessed bio-oil shipping amount (decision variable) 

    gasoline shipping amount (decision variable) 

   total available fund  (decision variable) 

     indicator of fast pyrolysis facility construction state (decision variable) 

 

Mixed integer linear programming method is used to formulate the sequential 

location and allocation problem, with maximizing the net present value (NPV) of the 

total profit of the next 10 years (2013-2022) being the objective. Total profit calculation 

considers revenue from selling products, feedstock costs (collecting and shipping costs), 

intermediate product (hydroprocessed bio-oil) shipping costs, final products shipping 

costs, facility capital cost, and operating costs (reflected by fixed operating costs and 

conversion cost).  
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Objective function is presented below: 
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Major constraints include: biomass supply availability constraints (1a), biofuel 

conversion balance constraints (1b,1e), fast pyrolysis facility existence and capacity 

limit constraints (1c), a maximum of one facility per candidate facility construction 

location constraints (1d), no destruction of facility constraints (1h), minimum demand 

requirement and demand upper bound constraints (1f, 1g), available construction budget 

related constraints (1i-1k), and initialization of current situation of fast pyrolysis facility 

situation constraints (1l).  
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2.4 Results and discussion 

In this section, the results of a case study in Iowa are illustrated. Candidate fast 

pyrolysis facility locations are the county centroids in Iowa, and four facility capacities 

are allowed: 400, 1000, 1500, and 2000 metric ton of dry basis biomass per day, 

respectively.  

To satisfy minimum demand requirement, available fund per year needs to be at 

least enough to construct two 2000 metric ton/day facilities. The results under this 

minimum budget amount are shown in Figure 4.2. The county that is assumed to locate 

the existing biorefinery is represented using cross-shaded lines. Stars are fuel demand 

locations (centroids of MSAs), and star sizes illustrate the magnitude of fuel demand 

from the MSAs. From the results, all facilities built are of the highest allowed capacity, 

and in the figure, different color circles are used to represent the difference in 

construction order. The labeled year is the first year the corresponding facility starts to 

operate (construction finished). Facility locations are listed in legend, using FIPS codes 

of facility-located counties. The optimal NPV achieved is $5.28 billion.  
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Figure 4.2 Sequential facility construction under annual fund of twice capital cost of 

2000 metric ton/day facility 

 

If annual available fund increase to 2.5 times capital cost of 2000 metric ton/day 

facility, the results are shown in Figure 4.3. It could be seen in the figure, that with more 

available fund, it takes fewer years to finish constructing all facilities needed for the 

demand goal in 2022. The optimal NPV achieved is $6.03 billion.  

 
Figure 4.3 Sequential facility construction under annual fund of 2.5 times capital cost of 

2000 metric ton/day facility 
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Comparing the results under different budget limitations, several observations are 

summarized as follows: 

 All facilities are built with the highest allowed capacity level. This is due to the 

scaling factor in capital cost estimation, which makes larger capacity facilities more 

cost-effective.  

 Facility locations are very much affected by biorefinery location. From the yearly 

allocation results, most biomass supply could be satisfied within the county where 

the facility is located; therefore, hydroprocessed bio-oil shipping costs become a 

major concern in facility location decisions. To minimize the transportation costs, 

locating fast pyrolysis facilities close to biorefinery is the optimal option. 

 With the increase in annual available fund, the overall sequence of fast pyrolysis 

facility construction does not change much. It’s noticed that with higher available 

fund, facilities tend to build earlier to achieve a higher NPV.  

3. Conclusion 

Biofuels have become increasingly attractive to replace petroleum fuel. In this 

study, the pathway of fast pyrolysis, hydroprocessing and refining is considered to 

produce gasoline-diesel ranged fuels from cellulosic biomass. Mixed integer linear 

programming models are formulated to investigate the supply network design and the 

sequence of the facility construction. The objective is to maximize the NPV of the total 

profit till 2022, which is the target year of RFS2. A case study in Iowa is conducted to 

illustrate the modeling approach. Numerical results show the preference for high 
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capacity facilities, facility locations that are close to existing biorefinery, and earlier 

construction time as long as the budget allows. It is also concluded that the increase in 

annual available fund level does not have much impact on the construction sequence.  

It should be noted that this sequential facility location problem is an ongoing 

research work that can be further investigated. Better data or modeling information, 

including the annual requirement of bio-based fuels, annual budget, and uncertainties in 

the feedstock availability and logistic cost, are to be investigated for more realistic 

decision making. In addition, facility capacity expansion could also be taken into 

consideration in the modeling framework.  
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CHAPTER 5 GENERAL CONCLUSION 

 

In the United States, current federal biofuel policy is largely based on the 

Renewable Fuel Standard (RFS), which mandates the production and blending of 

different classes of biofuels. The revised Renewable Fuel Standard, RFS2, focuses more 

on cellulosic biofuels. Motivated by these regulatory policies, this thesis work has been 

focused on the economic assessment of biofuel production pathway and biofuel supply 

network design. The goal is to assist decision making for advanced biofuel production in 

the U.S. 

In Chapter 2, the economic feasibility for a commercial scale facility based on 

fast pyrolysis fractionation is evaluated. The project IRR is 8.78% for the baseline 

scenario. Sensitivity analysis shows that fluctuations in biomass feedstock cost, major 

products yield and market prices could have the most significant impact on the project 

IRR. Based on the analysis, more attentions could be paid to pyrolysis oil recovery 

conditions and upgrading technologies, to increase economic potential of such facilities.  

Motivated by the importance of supply chain network design for biofuel 

production, Chapter 3 and 4 focus on the decision making models for facility siting and 

sizing. The optimization models results suggest that with rich cellulosic biomass, such as 

Iowa, producing hydrocarbon liquid fuels via fast pyrolysis, hydroprocessing and 

refining could be profitable. The investment of a refining facility could be economically 

justified for the long-term development of cellulosic biofuel industry. Furthermore, 
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refining facility location is essential to average annual profit, and has large impact on 

facility locations and construction sequences.  

For future research directions, uncertainties on feedstock supply, conversion 

yield and biofuel demand can be incorporated.  Environmental considerations could be 

included with additional constraints. Lifecycle assessment would be needed to analyze 

the detail environmental impacts. Such extensions could contribute to more 

comprehensive insights into the future development of the cellulosic biofuel industry.   
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